Boundary values and generalized normal derivatives of harmonic Dirichlet functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Angular Derivatives of Generalized Schur Functions

Characterization of generalized Schur functions in terms of their Taylor coefficients was established by M. G. Krein and H. Langer in [14]. We establich a boundary analog of this characterization.

متن کامل

Invariant Percolation and Harmonic Dirichlet Functions

The main goal of this paper is to answer question 1.10 and settle conjecture 1.11 of BenjaminiLyons-Schramm [BLS99] relating harmonic Dirichlet functions on a graph to those on the infinite clusters in the uniqueness phase of Bernoulli percolation. We extend the result to more general invariant percolations, including the Random-Cluster model. We prove the existence of the nonuniqueness phase f...

متن کامل

Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series

In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.

متن کامل

Analytic Functions and Boundary Values

Analytic functions in tubes T B = R+iB in C, where B 1⁄2 R, that generalize the Hardy H spaces are studied. The associated function M¤ of Komatsu, which is de ̄ned with the aid of certain sequences of positive real numbers, is involved in the generalizing bound of the L norm. Fourier-Laplace and Cauchy integral representations are obtained for these functions. These representations can be used t...

متن کامل

Median Values, 1-harmonic Functions, and Functions of Least Gradient

Motivated by the mean value property of harmonic functions, we introduce the local and global median value properties for continuous functions of two variables. We show that the Dirichlet problem associated with the local median value property is either easy or impossible to solve, and we prove that continuous functions with this property are 1-harmonic in the viscosity sense. We then close wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1974

ISSN: 2156-2261

DOI: 10.1215/kjm/1250523285